Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision.
نویسندگان
چکیده
Acoustic information in auditory nerve discharges is integrated in the cochlear nuclei, and ascends through several parallel pathways to higher centers. Octopus cells of the posteroventral cochlear nucleus form a pathway known to carry information in the timing of action potentials. Octopus cells have dendrites oriented to receive converging input from many auditory nerve fibers. In all 34 intracellular recordings from anatomically identified octopus cells in slices, shocks to the auditory nerve evoked brief, consistent, graded EPSPs. EPSPs were about 1 msec in duration. At all but the lowest shock strengths, the delays between shocks and the peaks of resultant EPSPs had SDs of 0.02 msec. Polysynaptic excitation, perhaps arising from the axon collaterals of octopus cells, was observed. No detectable glycinergic or GABAergic inhibition was evoked with shocks. The input resistances were low, around 10 M omega, voltage changes were rapid, with time constants of about 1 msec, and action potentials were small. The low input resistance resulted in part from a Cs(+)-sensitive conductance. In the presence of 10 or 15 mM extracellular Cs+ the time constants increased 20-fold in the hyperpolarizing voltage range. As several subthreshold inputs were required to produce suprathreshold responses, octopus cells detect the coincident firing of auditory nerve fibers. Under physiological conditions the low input resistance and resulting short time constant limit the time over which temporal summation of excitation from auditory nerve fibers can occur and thus provide temporal precision to electrical signaling.
منابع مشابه
Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization.
Whole cell patch recordings in slices show that the probability of firing of action potentials in octopus cells of the ventral cochlear nucleus depends on the dynamic properties of depolarization. Octopus cells fired only when the rate of rise of a depolarization exceeded a threshold value that varied between 5 and 15 mV/ms among cells. The threshold rate of rise was independent of whether depo...
متن کاملDetection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory ...
متن کاملRole of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus.
Recognition of acoustic patterns in natural sounds depends on the transmission of temporal information. Octopus cells of the mammalian ventral cochlear nucleus form a pathway that encodes the timing of firing of groups of auditory nerve fibers with exceptional precision. Whole-cell patch recordings from octopus cells were used to examine how the brevity and precision of firing are shaped by int...
متن کاملPotassium currents in octopus cells of the mammalian cochlear nucleus.
Octopus cells in the posteroventral cochlear nucleus (PVCN) of mammals are biophysically specialized to detect coincident firing in the population of auditory nerve fibers that provide their synaptic input and to convey its occurrence with temporal precision. The precision in the timing of action potentials depends on the low input resistance (approximately 6 MOmega) of octopus cells at the res...
متن کاملHyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus.
Octopus cells in the posteroventral cochlear nucleus of mammals detect the coincidence of synchronous firing in populations of auditory nerve fibers and convey the timing of that coincidence with great temporal precision. Earlier recordings in current clamp have shown that two conductances contribute to the low input resistance and therefore to the ability of octopus cells to encode timing prec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 4 شماره
صفحات -
تاریخ انتشار 1995